SOLAR POWER DATA VISUALIZATION AND ANALYSIS MACHINE LEARNING WEB APPLICATION

STUDENT'S NAME

SUPERVISOR

S/N	NAME OF STUDENT
1	JOSPETER JONATHAN

S/N	NAME								
1	Mr. PASCAL	MAGAMBO							

"This project has been funded with support from the European Commission. This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein"

INTRODUCTION

- Solar power data visualization and analysis machine learning web is a smart grid system that is being studied for collecting and predicting facility data in real-time.
- Smart grid has attracted attention as the next-generation power solver because it can serve for power demand, environmental pollution, and resource depletion.
- Therefore, in this study, we propose a management system that collects the data of a photovoltaic system and predicts the amount of power generation.
- Thus, we designed an environment that can collect solar data, adjacent environment data, and facility information in real time.

DESIGN

The web application was designed using the following technologies:

- ✓ Stream-lit (Python library) for creating the user interface,
- MySQL database for storing solar power data
- ✓ HTML for adding functionalities in a web application
- ✓ CSS for styling,
- ✓ Sk-learn (Python library) for machine learning.

WORKING PRINCIPLE

- Solar Power Data are fetched from MySQL database with MySQL connector into the web application which manages data by providing the analysis and visualization. Also, with a machine learning model provides the predictive analysis to the output due to the change in the input parameters like Temperature, Humidity, Current, Voltage.
- After the data analysis and visualization of data, it provides real-time updates for dynamic data visualization and immediate feedback on changes in the solar power system
- Also, the user inputs different parameters, then the trained model predicts solar sizing based on the user inputs
- With an interactive dashboard a user is able to interact with filters and customization options.

FLOWCHART

MySQL database for storing Solar Power Data and sending them into a

web application

phpMyAdmin	← 🗊	Server:	127.0.0.1	» 🍵 Dat	abase: so	lardb »	🚮 Table:	sola	IF								
👷 🗐 😡 🗊 🎲 😋	B	rowse	🦌 Str	ucture	SQL	٩, :	Search	3-	Insert	E E	xport	-	Import		Privileges	Jan Barris	Operatior
Recent Favorites	Showing rows 0 - 8 (9 total, Query took 0.0004 seconds.) [Current: 3 1]																
←	SELE	CT * FI	ROM `sola	r` ORDER	BY `Cur	rent`	DESC										
€- i mydb	🗆 Pr	rofiling [Edit inline] [Edit] [I	Explain SC	QL][Cr	eate PHP o	code][Refres	h]							
⊕-		Show	oll Num	bor of rou	25		Eiltor row		Soorah thi	ie teble			Port by k		Nono		
+- performance_schema		SHOW			/5. 20	•	FILLETTOW	5.	Search un	IS LADIE	J			∋y.	None		Ŷ
solardb	Extra c	options															
	←T-	→		-	Temper	rature	Humidity	, C	Current 🕔	∞ 1	Voltage	id					
€ solar		🥜 Edit	👍 Сору	Oelet	9	25		52		3	1	2	1				
		🥜 Edit	Copy	😑 Delet	е	30		48		3	1	2	3				
		🥜 Edit	👍 Сору	Delet	e	25	:	54		3	1	2	4				
		🥜 Edit	Copy	Delet	e	21	;	34		3	1	0	7				
		🥜 Edit	👫 Сору	Delet	e	34		45		2	ŕ	11	2				
		🥜 Edit	Copy	Delet	e	31	:	21		2	1	2	6				
		🥜 Edit	🛃 Сору	Delet	Ð	20		45		2		11	8				
		🥜 Edit	Copy	Delet	Ð	28		47		2	1	2	9				
		🥜 Edit	Copy	Delet	e	24	:	38		1		9	5				
			Check all	With se	lected:	🥜 Edit	Co	ору	😂 De	elete	📑 E	xport					

VISUALIZATION OF THE OUTPUT: WEP APP home page(dashboard)

Solar Power Module Data from the Database:

Sensors Data							
Filter:							
Temperature × Humidity × Current × Voltage ×							
	Temperature	Humidity	Current	Voltage			
0	25	52	3	12			
1	34	45	2	11			
3	25	54	3	12			
4	24	38	1	9			
5	31	21	2	12			
6	21	34	3	10			
7	20	45	2	11			
8	28	47	2	12			

The analysis bar gives the analyzed (including central tendencies) automatically for our outputs:

Graphs:

The progress bar shows the progress of our solar power model if it satisfies the required outputs:

Embedded Machine Learning Model which predicts optimal configurations for solar sizing and installations.

Predict Voltage Category	Predicted Voltage Category	y
(comma-separated): 24,54,1	Tabular	^
		Model Efficiency:
		98.0 %

REFERENCES

Aljarah, I. (2022). Solar PV power forecasting at Yarmouk University using machine learning techniques. Gruyter.

- Amy J.C Trappey, P. P. (2019). A Machine Learning Approach for Solar Power Technology Review and Patent Evolution Analysis. Taiwan.
- Ashish Sedai, R. D. (2023). *Performance Analysis of Statistical, Machine Learning and Deep Learning Models in Long-Term Forecasting of Solar Power Production*. USA: Suhas pol.

Scheidt, V. (2020). Data analytics in the electricity sector. Weinhardt.

